Prawidłowe ustawienie noży w nożycach do blachy

Niezmiernie istotne dla prawidłowej i efektywnej pracy nożycami nożowymi jest odpowiednie ustawienie noży tnących. Niniejszy artykuł podaje podstawowe zasady regulacji ich rozstawienia.

Nożyce nożowe to elektronarzędzia wymagające dokonania odpowiedniej regulacji rozstawu noży zarówno w płaszczyźnie poziomej (horyzontalnej), jak i pionowej (wertykalnej) w celu dostosowania ich do obrabianej grubości. Dlatego za każdym razem, gdy tniemy blachę o innej grubości, należy dokonać regulacji rozstawienia noży. W tym celu trzeba posłużyć się szczelinomierzem. Wielkość rozstawu horyzontalnego ma wpływ na skuteczność cięcia nożycami. Jeśli odległość pomiędzy nożami w płaszczyźnie poziomej za szeroka, nacisk ostrzy na blachę jest zbyt duży. Wskutek tego często dochodzi do złamania tych narzędzi lub do wciągnięcia ciętej blachy między noże. Zaś jeżeli rozstaw jest za mały i ostrza są za blisko siebie, będą tarły o siebie – w skrajnych wypadkach dojdzie do ich zablokowania, a więc do powstania przeciążenia silnika elektrycznego lub nawet do spalenia jego uzwojeń. Zbyt bliskie położenie ostrzy jest także przyczyną klinowania się nożyc w materiale, wtedy blacha nie odgina się na bok, lecz w dół, blokując narzędzie. Na podstawie testów ustalono, że prawidłowy rozstaw w płaszczyźnie poziomej między nożami powinien wynosić 0,1 grubości przecinanej blachy, np. dla blachy o grubości 2 mm jego wielkość to 0,2 mm.

Aby prawidłowo ustawić rozstaw noży, należy poluzować nóż nieruchomy. Następnie między noże włożyć szczelinomierz (fot. 1.), w naszym wypadku jest to pasek o grubości 0,05 mm, gdyż blacha, którą chcemy przeciąć, ma grubość 0,5 mm. Po ustaleniu prawidłowej odległości, montujemy nóż (fot. 2.) i blokujemy jego pozycję (fot. 3.), a na końcu spomiędzy ostrzy wyjmujemy szczelinomierz. Teraz możemy przejść do ustawienia noży w pozycji pionowej.

Przypomnijmy, rozstaw w płaszczyźnie pionowej (czyli wertykalny) to maksymalna odległość między nożami (tj. mierzona w punkcie najwyższego położenia noża ruchomego). Dlatego potocznie nazywa się go wysokością cięcia. Determinuje on wydajność pracy. Największa wysokość cięcia z możliwych to taka, przy której blacha nie ślizga się pomiędzy dwoma ostrzami w ich pozycji maksymalnego rozstawienia. Zatem prawidłowa wysokość jest nieznacznie mniejsza od grubości obrabianej blachy. Kiedy zaś jest większa lub równa grubości blachy, czyli za duża, dochodzi do wpychania się ciętego arkusza między noże. W takim przypadku użytkownicy często tną tylnym odcinkiem ostrzy noża ruchomego, jeśli wywierają zbyt duży posuw nożycami. To zaś powoduje za duże obciążenie tylnych krawędzi tnących i często doprowadza do złamania noża ruchomego albo do zbyt dużej deformacji blachy w miejscu cięcia. Jeżeli wysokość cięcia jest zbyt mała, następuje zmniejszenie długości cięcia na jednym suwie noża, a w konsekwencji do spadku szybkości cięcia, czyli de facto mniejszej wydajności.


Po tym wstępie teoretycznym przystąpmy do regulacji wysokości rozstawu noży. Mając prawidłowy rozstaw noży, możemy więc je ustawić w pozycji pionowej. W tym celu ustawiamy nóż ruchomy w punkcie najwyższego jego położenia (w tym celu czasami konieczne jest parokrotne włączenie i następnie wyłączenie nożyc, aby ostrza ustawiły się w tej pozycji) i luzujemy go. Potem ustawiamy prawidłową wysokość noża zgodnie z rys. 1. za pomocą górnej śruby blokującej (fot. 4.) i montujemy nóż kluczem imbusowym (fot. 5.), dokręcając śrubę mocującą. Gdy mamy prawidłowo ustawione noże (fot. 6.), możemy przystąpić do cięcia (fot. 7.).

ZOBACZ TAKŻE
guest
0 komentarzy
Inline Feedbacks
View all comments

Mierzenie za pomocą mierników uniwersalnych (cz. II)

Na rynku dostępnych jest wiele mierników uniwersalnych. Aby ułatwić użytkowanie tych przyrządów, w niniejszym artykule podajemy prawidłowe metody posługiwania się nimi. W tym celu wykorzystaliśmy miernik YATO YT-73087.

 

 

 

W poprzedniej części artykułu („Gazeta Narzędziowa 12/2012”) pokazaliśmy, jak prawidłowo zmierzyć takie wartości elektryczne jak napięcie i natężenie prądu, rezystancję oraz pojemność kondensatora; oraz jak wykorzystać miernik YATO YT-73087 do pomiaru temperatury wnętrza urządzenia elektrycznego, hałasu generowanego przez urządzenia elektryczne i natężenia światła w pomieszczeniu. Przypomnijmy, YATO YT-73087 jest wielofunkcyjnym cyfrowym multimetrem przeznaczonym do pomiarów różnych wielkości elektrycznych o przebiegach sinusoidalnych. Miernik pozwala również na pomiary wilgotności względnej, temperatury, poziomu dźwięku czy natężenia oświetlenia. W przypadku niektórych wielkości pomiarowych miernik potrafi sam je dobrać w zależności od wyników pomiarów. Ma obudowę z tworzywa sztucznego, wyświetlacz ciekłokrystaliczny, przełącznik zakresów pomiarowych oraz przyciski pozwalające m.in. na wybór rodzaju prądu, zapamiętania na wyświetlaczu zmierzonej wielkości, podświetlenia wyświetlacza. W obudowie zainstalowane są gniazda pomiarowe. Miernik wyposażono w przewody pomiarowe oraz sondę do pomiaru temperatury. Ma on następujące przyciski: FUNC (wybór rodzaju prądu stały/przemienny), HOLD (służy do zachowania na wyświetlaczu zmierzonej wartości, przyciśnięcie przycisku spowoduje, że aktualnie wyświetlana wartość pozostanie na wyświetlaczu nawet po zakończeniu pomiaru – działanie funkcji jest sygnalizowane literą H; w celu powrotu do trybu pomiaru należy ponownie nacisnąć przycisk HOLD), Hz (służy do wyboru pomiaru częstotliwości lub cyklu pracy %, wybrany tryb pracy jest sygnalizowany na wyświetlaczu) i REL (umożliwia pomiar wartości względnej; funkcja jest dostępna dla każdej pozycji wybieraka oprócz pomiarów częstotliwości oraz cyklu pracy). Miernik Yato YT-73087 jest przyrządem, którego obsługa jest intuicyjna. Czytelnie oznaczone poszczególne funkcje na przełączniku zakresów i gniazd pomiarowych pozwalają na bezproblemowe dokonywanie pomiarów.
Najpierw zajmiemy się pomiarem częstotliwości prądu (fot. 1.). W tym celu przewody pomiarowe podłączamy do gniazd oznaczonych VΩHz oraz COM. Przełącznik zakresów ustawiamy w pozycję pomiaru napięcia Hz%. Przyciskiem FUNC wybieramy pomiar częstotliwości (na wyświetaczu powinien być widoczny symbol „Hz”). Mierzoną wartość odczytujemy z wyświetlacza.
Kolejną wartością elektryczną, którą zmierzymy, jest współczynnik wypełnienia. Najpierw podłączamy przewody pomiarowe do gniazd „VΩHz” i „COM”, potem przyciskiem „FUNC” wybieramy pomiar współczynnika wypełnienia (na wyświetlaczu widoczny jest symbol „%”) i odczytujemy wynik pomiaru na wyświetlaczu (fot. 2. i 3.). My zmierzyliśmy współczynnik wypełnienia dla prądu zmiennego sinusoidalnego (fot. 2.) i o charakterystyce prostokątnej (fot. 3.). Warto tu wspomnieć, że w przypadku miernika YATO YT-73087 napięcie mierzonego sygnału musi się zawierać w zakresie od 3 Vp-p do 10 Vp-p, a częstotliwość sygnału nie może przekraczać 10 kHz. Jeśli parametry mierzonego sygnału wykraczają poza podany zakres, dokładność wykracza poza zakres podany w tabeli dla tego przyrządu (Vp-p oznacza napięcie między szczytowymi punktami sygnału).
Przyrządem YATO możemy też przetestować diody. W tym celu podłączamy przewody pomiarowe do gniazd oznaczonych „VΩHz” i „COM”, a wybierak ustawiamy na symbolu diody. Przyciskiem „FUNC” wybieramy testowanie diod (na wyświetlaczu ma być wtedy widoczny symbol diody). Końcówki pomiarowe przykładamy do wyprowadzeń diody w kierunku przewodzenia (fot. 4.) i w kierunku zaporowym (fot. 5.). Jeśli dioda jest sprawna, z pomiaru w kierunku przepustowym odczytamy spadek napięcia wyrażony w woltach (V), zaś w przypadku podłączenia w kierunku zaporowym na wyświetlaczu zostanie wyświetlony symbol „OL”. Jak wiadomo, sprawną diodę cechuje mała rezystancja w kierunku przewodzenia oraz duża rezystancja w kierunku zaporowym. Należy tu wspomnieć, że miernikiem YATO YT-73087 nie wolno testować diod, przez które przepływa prąd elektryczny.
Ostatni rodzaj pomiaru, który możemy wykonać miernikiem YATO, jest pomiar wilgotności względnej (fot. 6.). W tym celu wybierak ustawiamy w pozycja „%RH”. Czujnik wilgotności znajduje się na szczycie obudowy i jest oznaczony symbolem „%RH”. Mierząc, należy odczekać do ustabilizowania siłę wyniku, a następnie odczytać jegowartość.

ZOBACZ TAKŻE
guest
0 komentarzy
Inline Feedbacks
View all comments
copyright 2025 portalnarzedzi.pl | wykonanie monikawolinska.eu