Czy wiercenie w stali musi być uciążliwe?

Wiercenie w stali wykonywane za pomocą wiertarek ręcznych może się stać czynnością bardzo uciążliwą, jeśli użyjemy do tego wierteł o nieodpowiedniej geometrii. Zastanówmy się więc, jakie wiertła najlepiej zastosować do tego typu operacji.

Oczywiste jest, że do wiercenia w stali używa się wierteł krętych specjalnie przeznaczonych do tego typu obróbki. Jednakże wiele osób, które muszą wykonywać otwory w stali, narzeka, że chociaż używa do tego prawidłowych narzędzi, jest to operacja długotrwała i wymagająca użycia dużej siły nacisku na wiertarkę, a więc męcząca. Można więc zapytać, skąd wynika konieczność stosowania tak dużej siły? Najprościej można odpowiedzieć, że – z geometrii wierteł. Wiertła standardowe mają bowiem najprostszą z możliwych geometrię krawędzi skrawających, czyli skręcone krawędzie stożkowate, połączone krawędzią poprzeczną zwaną ścinem. Znajduje się on na samym wierzchołku osi wiertła. Konsekwencją tego usytuowania jest bliska zeru prędkość obwodowa ścina. Jego krawędź tnąca jest do tego tępa i dlatego bierze niewielki udział w procesie wiercenia. W zasadzie szlifuje tylko powierzchnię obrabianego metalu. Ponieważ ścin nie jest ostry, nie centruje wiertła, pozwalając zbaczać mu z wyznaczonego punktu wiercenia w pierwszej fazie wykonywania otworu (tylko podczas wiercenia ręcznego). Na skutek tego dochodzi często do zarysowania powierzchni elementu, w którym wiercimy.

Aby do tego nie dopuścić, musimy wywierać mocny docisk na narzędzie. Badania wykazały, że do 60% siły nacisku zużywane jest na pokonanie oporu, który metal stawia ścinowi. Duża siła nacisku i tarcie w strefie skrawania są przyczynami powstawania w niej wysokiej temperatury. Aby temu zapobiec, musimy stosować chłodzenie. Stąd, jak widać, krawędź ścina jest przyczyną wielu kłopotów z wierceniem w metalach, szczególnie w twardej stali. Jedną z metod radzenia sobie z nimi jest stosowanie wierteł o zoptymalizowanej geometrii, która eliminuje konieczność stosowania dużej siły, jednocześnie zwiększając szybkość wiercenia w metalach.

Aby sprawdzić, jak skuteczne jest wiercenie wiertłami o zmodyfikowanej geometrii krawędzi skrawających ostrzy, wykorzystaliśmy do tego wiertła: HSS (o zmodyfikowanej geometrii typu A (zob. rysunek zamieszczony w artykule), HSS TiN (wiertła HSS pokryte azotkiem tytanu o zmodyfikowanej geometrii typu A) i kobaltowe HSS-Co (o zmodyfikowanej geometrii typu D) i porównaliśmy otrzymane wyniki z wynikami użycia popularnego wiertła HSS o tradycyjnej geometrii typu B, czyli z dużym ścinem. Wszystkie użyte przez nas narzędzia miały średnicę 10 mm. Wykonywaliśmy nimi otwory o głębokości 10 mm w stali konstrukcyjnej przy użyciu wiertarki 1000-watowej. Stosowaliśmy nacisk wiertłem na obrabiany element stalowy przez obciążenie dźwigni stojaka wiertarskiego sztabą stalową o wadze 10 kg. Wiercenie było więc wykonywane bez udziału operatora, przez co zostały wyeliminowane czynniki przypadkowe towarzyszące ręcznemu wykonywaniu tej operacji. Rola operatora sprowadzała się tylko do włączenia i wyłączenia wiertarki oraz do podawania emulsji chłodząco-smarującej do strefy wiercenia.

Wiertłem HSS o zmodyfikowanej geometrii A uzyskaliśmy następujące czasy: 18 s (10 kg) i 16,25 s (10 kg); zaś HSS TiN o geometrii A – 9 s (10 kg) i 9 s (10 kg); HSS-Co o geometrii D – 21 s (10 kg) i 14 s (10 kg). Otwory porównawcze wykonane wiertłem HSS o tradycyjnej geometrii typu B zostały wywiercone w następujących czasach: 1 m 07 s (10 kg) i 54 s (10 kg).
Otrzymane wyniki pokazują, że wiertłami o zmodyfikowanej geometrii możemy wiercić nawet do ponad 6 razy szybciej niż wiertłami o tradycyjnej geometrii, a także, że w przypadku wykonywania otworów w stali konstrukcyjnej najbardziej wydajne są wiertła HSS TiN z geometrią typu A. W tego typu obróbce są one ponad 50% wydajniejsze niż wiertła kobaltowe, które odznaczają się bardzo wysoką trwałością, co wynika z właściwości użytego na nie materiału. Powodem szybszej pracy wierteł HSS TiN jest zmniejszenie tarcia w strefie skrawania przez pokrycie ich cienką warstwą azotku tytanu. Warstwa ta także zwiększa trwałość tych narzędzi.

Reasumując, można powiedzieć, że gdy musimy wiercić w stali z ręki, najlepiej jest używać wierteł o zmodyfikowanej geometrii, gdyż wtedy znacznie skrócimy proces wykonywania otworu, a tym samym nie będzie on dla nas bardzo uciążliwy. Wniosek ten szczególnie dotyczy osób, które do tego używają wiertarko-wkrętarek niemających rękojeści dodatkowych. Muszą one wywierać dość duży nacisk maszyną, co jest niewygodne i doprowadza do odchylania wiertła od wyznaczonej osi wiercenia. W efekcie uzyskany otwór jest małej jakości, a w czasie wiercenia wielokrotnie dochodzi do zakleszczenia się wiertła w obrabianym materiale, co jest przyczyną przeciążenia elektronarzędzia i ma negatywny wpływ na jegotrwałość.

ZOBACZ TAKŻE
guest
0 komentarzy
Inline Feedbacks
View all comments

SILNIKI ELEKTRYCZNE STOSOWANE W ELEKTRONARZĘDZIACH I MASZYNACH (CZĘŚĆ II). SILNIKI ASYNCHRONICZNE.

W pierwszej części cyklu omówiliśmy krótko historię techniki napędów potrzebnych do konstruowania maszyn i urządzeń. Stwierdziliśmy, że decydującym krokiem w rozwoju silnika prądu przemiennego było wynalezienie silnika asynchronicznego, czyli indukcyjnego. W części drugiej omówimy budowę i zasadę działania takiego silnika.

 

Silnik asynchroniczny składa się z dwóch podstawowych części: nieruchomego stojana oraz ruchomego wirnika. Stojan wykonany jest z ferromagnetycznych blach elektrotechnicznych ze żłobkami na ich wewnętrznych krawędziach. W żłobkach tych poprowadzone są przewody cewki uzwojenia, wokół których podczas przepływu prądu przemiennego powstaje zmienne pole magnetyczne. Wektor tego pola pulsuje z częstotliwością prądu płynącego przez uzwojenie. Pole takie możemy uzyskać zarówno przy zasilaniu 1-fazowym, jak i 3-fazowym. Zasilenie trzech uzwojeń stojana napięciem trójfazowym powoduje powstanie trzech pól pulsujących z tą samą częstotliwością, ale przesuniętych w fazie. Dodając wektory pól pulsujących otrzymamy wypadkowy wektor, który będzie wirował wokół osi obrotu. W przypadku silników trójfazowych mamy trzy takie zwojnice przesunięte wzajemnie o kąt 120°, co zapewnia takie samo przesuniecie przebiegów pulsowania wektorów pól magnetycznych wytwarzanych przez poszczególne uzwojenia. Natomiast w przypadku zasilania 1-fazowego trzeba spełnić warunki niezbędne do powstania pola wirującego. W większości przypadków realizuje się to poprzez zastosowanie dwóch uzwojeń: głównego i pomocniczego (pełniącego rolę rozruchowego). Uzwojenia są przesunięte względem siebie na obwodzie stojana o kąt 90°. Również prądy zasilające uzwojenia są przesunięte w fazie o taki kąt. Przesunięcie takie można uzyskać poprzez podłączenie jednego z uzwojeń przez kondensator rozruchowy. Wypadkowe pole wirujące w obu przypadkach powstaje w wyniku zsumowania wektorów pól składowych.

36-358-5007-005tx14_energ_GN1-2011

Drugą częścią silnika asynchronicznego jest ruchomy wirnik. Rozróżniamy tutaj dwie wersje wykonania: wirniki pierścieniowe i klatkowe. Wirnik pierścieniowy jest wykonany z blach elektrotechnicznych ze żłobkami wykonanymi na jego zewnętrznej powierzchni. W żłobkach prowadzenie uzwojenia wykonane jest podobnie do uzwojenia stojana. Jest na stałe połączone z pierścieniami ślizgowymi (stąd nazwa „silnik pierścieniowy”). Za pośrednictwem przylegających do pierścieni szczotek uzwojenia wirnika połączone są z dodatkowymi elementami zwiększającymi rezystancję każdej z faz.

 

Inną konstrukcją jest wirnik klatkowy. Ma on obwód elektryczny wykonany z nieizolowanych prętów połączonych po obu stronach wirnika pierścieniami zwierającymi. Konstrukcja ta przypomina swoim wyglądem walcową klatkę (stąd nazwa tego silnika). Obwód magnetyczny wirnika wykonany jest z blach elektrotechnicznych wzajemne odizolowanych, ułożonych pakietowo jedna na drugiej. Obwód elektryczny wirnika klatkowego jest zawsze zwarty (inna nazwa tego silnika to silnik indukcyjny zwarty). Po podłączeniu zasilania w uzwojeniach cewek stojana silnika trójfazowego płyną prądy przesunięte względem siebie o 1/3 okresu i wytwarzające odpowiednie strumienie magnetyczne. Strumienie te indukują w układzie przewodów uzwojeń wirnika siłę elektromotoryczną. Przy zamkniętych obwodach uzwojeń wywoływany jest w ten sposób przepływ prądu elektrycznego zgodny z kierunkiem tej siły, a na znajdujący się w polu magnetycznym wirnik działa siła mechaniczna tworząca moment obrotowy wywołujący jego obrót. Oś wirnika połączona mechanicznie z elementami urządzenia w sposób bezpośredni stanowi właśnie „napęd bezpośredni”, natomiast połączenie za pomocą przekładni daje układ mechaniczny o „napędzie pośrednim”. Zmianę kierunku obrotów silnika asynchronicznego trójfazowego uzyskuje się poprzez zamianę miejscami dowolnych dwóch spośród trzech przewodów fazowych zasilających silnik. W przypadku silnika jednofazowego zmianę kierunku obrotów silnika uzyskuje się poprzez przełączenie kondensatora rozruchowego z jednego uzwojenia na drugie. Wówczas uzwojenie pracujące jako główne zamienia się w pomocnicze (rozruchowe), a pracujące wcześniej jako pomocnicze staje się uzwojeniem głównym, dając w rezultacie zmianę kierunku obrotów silnika.

han_2005_47_GN6-2011

Rozruch silnika jest możliwy, jeżeli powstający w chwili rozruchu moment elektromagnetyczny jest większy niż moment obciążenia. Najprostszym sposobem dokonania rozruchu silnika indukcyjnego 3-fazowego jest podłączenie uzwojeń stojana do 3-fazowego źródła zasilania. Jest to tzw. rozruch bezpośredni. W tym przypadku pobierany prąd rozruchu jest wielokrotnie większy niż prąd znamionowy (nawet do ośmiu razy). Powoduje to nagrzewanie się uzwojeń, a także może prowadzić do spadków napięcia w sieci zasilającej. Wartość powstającego momentu elektromagnetycznego nie jest zbyt duża, dlatego, aby silnik mógł wystartować, nie może być zbytnio obciążony. Ze względu na te ograniczenia rozruch bezpośredni stosuje się dla silników o małych mocach (do kilkunastu kW). W przypadku większych mocy stosowane są inne rodzaje rozruchu np. „gwiazda-trójkąt”, rozruch przez zmianę rezystancji w obwodzie wirnika oraz zastosowanie „soft startu”. Ten podział rodzajów rozruchu silnika indukcyjnego większych mocy omówimy w następnym odcinku naszego cyklu.

TomaszŻurkowski
ZOBACZ TAKŻE
guest
0 komentarzy
Inline Feedbacks
View all comments
copyright 2026 portalnarzedzi.pl | wykonanie monikawolinska.eu